The Influence of Tyrozine on Energetic Property in Graphene Oxide: A DFT Study

نویسنده

  • ROYA AHMADI
چکیده

Using the Computational methods, the interaction effect of Tyrosine Amino acid on Graphene was investigated. For this purpose, the Density Functional Theory )DFT (in the ground state of 6-31G was used, and the interaction effects of Tyrosine on Graphene was investigated through attachment to three different base positions. Different parameters such as energy levels, the amount of Chemical Shift in different atoms, the amount of HOMO/LUMO values and related parameters like Electrophilicity scale, chemical hardness, Chemical potential, and the maximum amount of electronic charge transferred. The Graphene oxide has the capability to act as adrug nano carrier and also as a mixture with special electrical properties. The results of this investigation also show that the attachment of Tyrosine Amino acid, as an organic compound, to the chemical structure of Graphene can change these capabilities to a great extent and also increase the role that this mixture already plays in medical, Pharmaceutical, and electronic industries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The influence of Tyrozine on energetic property in Graphene Oxide: A DFT studies

Using the Computational methods, the interaction effect of Tyrosine Amino acid on Graphene wasinvestigated. For this purpose, the Density Functional Theory (DFT) in the ground state of 6-31Gwas used, and the interaction effects of Tyrosine on Graphene was investigated through attachmentto three different base positions. Different parameters such as energy levels, the amount ofChemical Shift in ...

متن کامل

The effect of Glutamine on conductivity and energetic properties in Graphene: A DFT studies

Using the Computational methods, the interaction effect  of Glutamine Amino acid on Graphene was investigated. For this purpose, the Density Functional Theory) DFT (in the ground state of 6-31G was used, and the interaction effects of Glutamine on Graphene was investigated through attachment to two different base positions. Different parameters such as energy levels, the amount of Chemical Shif...

متن کامل

A competitive Diels-Alder/1, 3-dipolar cycloaddition reaction of1-H-imidazole 3-oxide toward sulfonyl methane. A DFT study on the energetic and regioselectivity

The dual diene/1,3-dipolar character of 1-H-imidazole 3-oxide, HIO 1, allows this compound toparticipate in a competitive Diels-Alder (DA)/1,3-dipolar cycloaddition (13DC) reaction toward C=Sdouble bond of the electro-deficient sulfonyl methane SFM 2. The B3LYP/6-311++G(d,p) calculatedrelative Gibbs free energies indicate that among the studied 13DC and DA reactions, former iscompletely preferr...

متن کامل

DFT Study of Nitrous Oxide Adsorption on the Surface of Pt-Decorated Graphene

In the present study we search potential of Pt-decorated graphene (PtG) as a new nanostructure adsorbent for nitrous oxide (N2O) using density functional theory (DFT). After fully relaxation of different possible orientations of N2O-PtG complex, we distinguished two optimized configurations for this system; 1- terminal N-side of gas is oriented towards Pt so that the molec...

متن کامل

Computational investigation of the influence of carbon nanostructures on the properties of energetic TATB substance by DFT method

In this study, computational synthesis of carbon nanostructures' derivatives with TATB or 2,4,6-triamino-1,3,5- trinitrobenzene , which is an energetic substance in the temperature range of 300-400 K were evaluated by density functional theory method. In this regard, at the outset, the substances in the both sides of intended reactions for forming the desired products were optimized geometrical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014